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A model for ripple instabilities in granular media
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Abstract. We extend the model of surface granular flow proposed in [1] to account for the effect of an
external ‘wind’, which acts as to dislodge particles from the static bed, such that a stationary state of
flowing grains is reached. We discuss in detail how this mechanism can be described in a phenomenological
way, and show that a flat bed is linearly unstable against ripple formation in a certain region of parameter
space. We focus in particular on the (realistic) case where the migration velocity of the instability is much
smaller than the grains’ velocity. In this limit, the full dispersion relation can be established. We relate the
critical wave vector to the mean hopping length and to the ratio of the flight time to the ‘stick’ time. We
provide an intuitive interpretation of the instability.

PACS. 83.70.Fn Granular solids – 81.05.Rm Porous materials; granular materials –
47.20.-k Hydrodynamic stability

1 Motivation

Common observations suggest that flat sand surfaces can
become unstable when subjected to moving air or wa-
ter. After some time regular patterns appear, as can be
observed on desert dunes, underwater sand, ‘dry’ snow,
etc. These patterns resemble surface waves; however their
physics is completely different since in the case of sand
there is no surface tension. Following Bagnold ([2], chap.
11) these patterns can be classified into ripples, ridges and
dunes. The repetition distance of ridges varies with time,
whereas ripples exhibit a stationary wavelength after some
transient. Early qualitative arguments by Bagnold [2] sug-
gested that the ripple wavelength λ is related to the typ-
ical path length of the blown grains, called the ‘saltation
length’ ξ. A more quantitative ‘two-species’ model was
proposed by Anderson [3], which describes the coupling
between the moving grains and the static bed. Such a
model predicts that a flat surface is unstable for all wave-
lengths, with a faster growing mode indeed comparable
to the typical jump length of the grains. However, this
model is incomplete: while the dynamics of the static bed
is treated exactly, the description of the moving phase is
highly simplified. Alternatively, there are also several nu-
merical models for ripple formation [4]. In this paper, we
extend Anderson’s theoretical model of ripple formation,
by adapting the phenomenological equations for surface
flow introduced in [1] in the context of avalanches, and
further discussed in [5–9].
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It is worth recalling, after Bagnold [2], some basic facts
about the motion of the grains and the formation of these
patterns: (i) There are two qualitatively distinct transport
mechanisms for the grains, saltation and surface creep1.
The trajectories of grains in saltation is determined by the
velocity profile of the wind, the air friction limiting the
grain velocity and by the initial energy of the grain when
first expelled from the sand bed. One of the characteristic
features of the path is the flat angle of incidence which
varies between 10◦ and 15◦. (ii) The saltation has two
effects on the surface: it either rebounds and/or ejects
grains leading to a new saltation or it produces surface
creep. There is however no sharp boundary between these
two processes, since the energy of the ejected grains varies
continuously. Both saltation and creep lead to a net flow
of grains in the direction of the wind. (iii) The time scale
of ripple formation is much larger than that of saltation.
(iv) The migration velocity of the ripples is much smaller
than a mean transport velocity (averaged over saltation
and creep).

2 A ‘two-species’ model with wind

The phenomenological approach we consider in the follow-
ing is based on the observation that two different species
of grains enter the problem: moving grains and grains at
rest. We will not distinguish between grains in saltation

1 To which one should also add ‘suspension’, corresponding
to very small grains flying high in the air.
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and creep, but introduce an appropriately averaged quan-
tity describing grains that are convected by either of the
two mechanisms, which we call the moving grain density
R(x, t) 2, where x is the coordinate in the direction of the
wind and t the time. (We will assume that the problem
is translationally invariant in the direction transverse to
the wind; see [9] for an extension to two dimensions). The
grains at rest contribute to the local height h(x, t) of the
static bed. The dynamical equations for R and h read, in
the hydrodynamical (long wavelength) limit:

∂tR = −V ∂xR+D1∂
2
xR+ Γ [R, h]

∂th = −Γ [R, h] (1)

where V and D1 are the average velocity of the grains
and the dispersion constant, related to the fact that
grains do not all move with the same velocity3. Note
that V can be much smaller than the saltation velocity
if the predominant mechanism is reptation. Γ describes
the rate with which a grain at rest is converted into a
moving grain (or vice versa) and depends both on R
and on the local surface profile h. For simplicity we have
defined R to have the same dimension as h, and it can
be thought of as the width of grains which has been
removed from the static bed. Correspondingly, Γ has the
dimension of a velocity. The construction of Γ is based
on phenomenological arguments [1], and encodes different
physical processes:

• Due to the presence of wind, grains can be ‘spon-
taneously’ ejected from the surface, even in the absence
of already moving grains. The rate at which this occurs
depends on the local wind velocity (or rather velocity gra-
dient at the surface). Since the wind velocity tends to be
larger when the local slope is facing the wind, we write:

Γsp = α0 + α1∂xh− α2∂
2
xh (2)

where the coefficients αi are positive or zero. We have
also included the second derivative contribution with a
minus sign, since grains are harder to dislodge in troughs
than at the top of a crest. Note that all these coefficients
are expected to depend on the external wind velocity. In
particular, as shown by Bagnold himself, the coefficient
α0 is only non-zero above a certain critical wind velocity,
noted V ∗fluid.

• When hitting the ground, a moving grain can either
be captured or transfer a part of its kinetic energy to
other static grains and provide new moving particles. The
rate at which both these process occur is proportional
to R (at least for small enough R – see below), and also
depends on the wind velocity and on the local slope.

2 In principle, one should consider a density R(x, v, t) which
depends on the instantaneous velocity of the grains. R(x, t) is
the average of R(x, v, t) over all velocities.

3 These terms can be understood, more generally, as the
long-wavelength limit of a more general non-local convection
term of the kind

∫
K(x− x′)R(x′, t) dx′.

Table 1. Summary of the different coefficients and their signs.
Only γ0 and γ1 can be negative, which corresponds to the
situations where capture dominates (low wind, or under water).

transport spontaneous stimulated saturation
coefficients processes processes coefficient

V > 0, D1 > 0 αi > 0 γi (γ2 > 0) β > 0

This suggests to write the stimulated conversion rate
as:

Γst = R[γ0 + γ1∂xh− γ2∂
2
xh]. (3)

The sign of γ0 depends on the strength of the wind; for
small wind velocity, one expects capture to be more im-
portant than emission, and thus that γ0 < 0. As again
shown by Bagnold, a localized source of moving grains
tends to die away when the wind velocity is less than
a certain V ∗impact < V ∗fluid, whereas a steady saltation
is found for larger velocities, suggesting that γ0 > 0 for
V > V ∗impact. In this case, however, it is easy to see that R
increases exponentially, and that higher order terms are
needed to describe the stationary situation. One can think
of several non-linear effects: for example, collision between
flying grains leads to dissipation and hence to a poorer effi-
ciency of the impacts on the static bed. Also, the presence
of a layer of moving grains screens the hydrodynamical
flow, which in turn reduces the energy transfer between
the wind and the saltating grains. To leading order, it is
reasonnable to describe these effects by adding a term4

−βRn with n = 2 in Γst. The following linear stability
analysis is however independent of n. If trapping domi-
nates (as is the case for under water ripples) one expects
γ1 < 0 because more grains are captured on the slope fac-
ing the convective flow. For the same reason, if stimulated
emission dominates, as is the case for wind blown sand,
one expects that γ1 > 0, since impacts induce more flying
grains. Finally, γ2 is positive since, again, grains are easier
to dislodge at the top of a bump.

The total conversion rate Γ is obtained as the sum
of Γsp and Γst, while the model proposed in [1] did not
contain the wind induced contribution proportionnal to α,
nor the non-linear term. The equation for h thus reads:

∂th = −(Rγ0 + α0) + βRn − (Rγ1 + α1)∂xh

+(Rγ2 + α2)∂2
xh. (4)

Note that the coefficients αi, γi (summarized in Tab. 1)
actually only enter through the combination αi + Rγi.
The gradient term can be interpreted as a translation of
the surface profile with time, at velocity W = α1 + Rγ1.
The sign of W is not fixed a priori: the direct action of
the wind (α1) is indeed to erode grains from the windward
slope of a bump and transport them in the direction of
the wind. The other contribution (Rγ1), however, moves
the bumps ‘backwards’ whenever the γ1 < 0: grains are

4 In principle, the dependence of V on R should also be taken
into account. We do not consider this here, since this does not
affect the linear instability analysis.
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under water

dR
/d

t

R
R0 R0 R0

α0

Fig. 1. Stability diagram, showing dR/dt as a function of R
in an homogeneous situation for n = 2. The case γ0 > 0 cor-
responds to blown sand with V > V ∗impact, where stimulated
emission is very efficient, and where R0 can be non-zero even
if α0 = 0 (i.e. when V < V ∗fluid). The situation where capture
dominates (γ0 < 0) is probably relevant for sand under water.
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Fig. 2. Rescaled damping rate as a function of the rescaled
wave vector. The plot shows data for η = 0.1, ω0D1 = V 2 and
D2/D1 = 0.1.

effectively deposited on the windward slope, contributing
to a translation of the bump against the wind. (A similar
discussion can be found in [1,8,9].)

Note that the above set of equations is non-linear, so
that non-trivial dynamics is expected. Some essential fea-
tures of the model can be investigated by linearizing the
system in the vicinity of the situation where the surface
is flat (h0 = 0). The moving grain density is given by the
solution of the equation α0 + γ0R0−Rn0 = 0. For the case
n = 2 (see Fig. 1) it reads:

R0 =
1

2β

[
γ0 +

√
γ2

0 + 4α0β

]
. (5)

3 Stability analysis

We will perform a stability analysis, i.e. investigate
whether a small perturbation is amplified or dies out with
time. Therefore we consider R = R0 + R̄, h = h0 + h̄ and
neglect second order terms of the kind R̄h̄, R̄2 and h̄2.
For simplicity of notation we drop the bars; the linearized
equations then read

∂tR = −ω0R− V ∂xR+D1∂
2
xR+W∂xh−D2∂

2
xh+ ...

∂th = ω0R−W∂xh+D2∂
2
xh+ ... (6)

with an effective velocity W = α1 +R0γ1 and an effective
diffusion constant D2 = α2 + R0γ2 > 0. ω0 is equal to
nβR0 − γ0; we will assume that it is positive (which is

always true for n = 2 where ω0 =
√
γ2

0 + 4α0β). A Fourier
analysis of the linearized equations leads to(
−iω−ω0−ikV −k2D1 ikW+k2D2

ω0 −iω−ikW−k2D2

)(
R̃

h̃

)
=0

(7)

where the tilde denotes the Fourier transforms. This sys-
tem has a non-trivial solution if the determinant of the
above matrix is zero, leading to the relation

ω2 + ω(a+ ib) + (c+ id) = 0. (8)

The coefficients read

a = (V +W )k

b = −
[
ω0 + (D1 +D2)k2

]
c = VWk2 −D1D2k

4

d = −(D1W +D2V )k3; (9)

they are functions of the wave vector k and of the system’s
parameters (V , W , D1, D2, ω0).

Equation (8) establishes a dispersion relation ω(k)
with two branches corresponding to the two solutions of
the quadratic equation, where ω has to be considered as a
complex variable. (Writing down the corresponding equa-
tions for the real and the imaginary part of ω leads to
quartic equations.) In the context of a stability analysis
we are interested in the imaginary part of ω(k): as long as
it is positive eiωt will decay exponentially, while a negative
imaginary part does lead to an instability. This imaginary
part is given by:

2Im(ω±) = −b±
1
√

2

[
−(a2 − b2 − 4c)

+
[
(a2 − b2 − 4c)2 + (2ab− 4d)2

]1/2]1/2
(10)

which is a function of k. A critical wave vector k∗ can be
defined such that Im(ω) is exactly zero, which leads to
d2 − abd+ b2c = 0. Inserting the explicit expressions (9),
one finds a cubic equation for k∗2. Whenever this equa-
tion admits a positive solution, there will be a finite band
of wave vectors [0, k∗] which are unstable (see Fig. 2).
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Note that for vanishing diffusion constants all wavelengths
are actually unstable. However, the curve Im(ω(k)) still
has a minimum, corresponding to the fastest growing
mode.

It is instructive to study the asymptotic behaviour of
the functions Im(ω−). One finds:

Im(ω−) =

{
−ηV

2

ω0
k2 + ... for k � ω0/V

D2k
2 + ... for k � ω0/V

. (11)

with η = W/V . The transport velocity V (by convention)
and the diffusion constants are positive; the main control
parameter remaining is the relative migration velocity
η. One can show that for 0 < η < 1 there is indeed
a band of instable wave vectors (one can see from the
asymptotic solutions that the sign changes for large k’s).
The situation where η < 0 is stable and η > 1 (i.e. a
bump moving faster than the transport velocity) does
not seem physical. The second branch Im(ω+) is always
positive and is thus of no importance for our stability
considerations.

Following the intuition that the ripples move much
more slowly than the grains are transported, we will as-
sume in the sequel that 0 < η � 1, which we attribute to
the fact that the α coefficients are small compared to V .
Since D2 ∝ α, this suggests that the diffusion constants
D1 and D2 are in the same ratio, so we write: D2 = δηD1,
where δ is of the order of one. These assumptions make it
possible to simplify the algebra and to find the solution:

Im(ω−) = η
k2
[
−ω0V

2+D1δ(ω0D1+V 2)k2+δD3
1k

4
]

ω2
0 +k2(2ω0D1+V 2)+k4D2

1

+o(η2). (12)

which is plotted in Figure 2. As we discuss now, three
relevant facts can be verified with this formula: (i) the
critical wave vector is of the order of the inverse mean
hopping length, (ii) the ripple velocity is of the order of
ηV and grows with the wavevector (i.e. small ripples are
faster than large ones) and (iii) the time scale of ripple
formation is much larger than the saltation time scale.

Let us first give some arguments for (i). Since the salta-
tion trajectories result from some random initial vertical
velocity of the grains, the hopping lengths will also be
random, with both short jumps (actually corresponding
to creep) and long jumps (corresponding to saltation). It
is reasonable to assume that the width of the hopping
length distribution is of the same order as its mean ξ (a
similar assumption is discussed in [3]). In this situation,
the ‘Péclet’ number defined as Pe = V ξ/D1 is of order
one: convective and diffusive effects are of the same order
of magnitude. In the case where the jump length distri-
bution is sharply peaked around ξ, one would rather have
Pe� 1.

Defining ξ = V τ , where τ is the typical flying time
between two collisions with the static bed, one finds that

the zero of (12) is located at:

k2
∗ =

Pe

2ξ2

{√
(ω0τ + Pe)2 + 4ω0τ/δ − (Pe+ ω0τ)

}
·

(13)

In the case where the sticking probability is large, it is
reasonnable to assume that ω0τ ∼ 1, thereby leading to
k∗ ∼ ξ−1 for Pe ∼ 1. On the other hand, for weakly
dissipative collisions (hard grains) or strong wind one
expects that ω0τ � 1, leading to unstable wavelengths
∼ ξ
√
δ/ω0τ much larger than the mean hopping length.

The ripple velocity is given by the corresponding dis-
persion relation, i.e. the real part of ω(k). One finds:

2Re(ω−) = η
k3V

[
V 2 + ω0D1(1 + δ) +D2

1k
2
]

ω2
0 + k2(2ω0D1 + V 2) + k4D2

1

+ o(η2).

(14)

The formula shows that for k ∼ k∗, both phase and
group velocities are, as expected, of the order of ηV ;
furthermore, it can be seen that the group velocity
increases with k, thus establishing (ii).

Finally knowing the fastest growing wave vector, one
finds that the ripple formation time tripple (determined by
the depth of the minimum in Fig. 2) is a factor 1/η larger
than say 1/ω0 or τ , i.e. that ripple formation occurs on
much slower time scales than any microscopic process. The
ratio of formation time and microscopic time scales should
indeed be roughly the same as that between migration and
convection velocity (iii).

4 Physical discussion and open questions

Let us finally give an intuitive interpretation of the
instability. Imagine a flat surface with a finite number of
moving grains above it (i.e. the stationary solution). Now
imagine a small perturbation of this situation, say a small
hump. The term ∂tR ∼ ∂xh in the linearized equations (6)
increases locally the concentration of the moving grains
thus producing a ‘cloud’ at the windward side of the
hump. This cloud is convected with the velocity V and
after a time unit of 1/ω0 the cloud has moved a distance
ξ where the cloud starts to ‘rain’ (i.e. moving grains are
converted into grains at rest). If the position of the hump
has in the same time moved (albeit at a much smaller
velocity) in the same direction, its height will increase,
leading to an instability. (Conversely, if the bump moves
backward – i.e. if W < 0 – the ‘rain’ will rather fill the
hole and smear out the bump.) The presence of the diffu-
sive processes counterbalances the amplification for small
distances and some optimum wavelength of the order of ξ
(corresponding to the minimum in Fig. 2) becomes visible.

Summarizing, we have thus shown that equations
(1), which are phenomenological, but motivated by
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clear physical processes, indeed show an instability
which is consistent with some essential features of ripple
formation. It is worth noting that our analysis, which
concentrated on the linearized system in the vicinity of
the stationary solution, is universal in the sense that
a whole class of models behaves in an analogous way
(with some possible redefinition of the coefficients). For
example, a non-linear dependence of the velocity V on R
does not modify the above analysis, up to a redefinition
of V . Note also that all phenomenological coefficients are,
at least in principle, measurable in situations independent
from ripple formation (since they are diffusion constants,
convection velocities, deposition rates etc.). In this sense
it should be possible to check experimentally for the
consistency of the above description.

Our conclusions are very similar to those reached by
Anderson [3], on the basis of a simplified model where the
flowing phase (what we have called R above) is assumed
to be in equilibrium from the outset, and where a rather
arbitrary distinction is made between ‘saltating grains’
which are never captured by the bed, and ‘reptating’
grains which are captured after exactly one jump. Cor-
respondingly, the structure of the dispersion relations
differ in the two approaches. Furthermore, it is difficult
to extend Anderson’s model beyond the linear instability
analysis while our model, in principle, can account for
non-linear effects [10].

Finally, there are several open questions which we
would like to mention and leave for future work: (i) Can
one establish some precise relations between the ‘mi-
croscopic’ coefficients (like wind velocity, polydispersity,
elasticity etc.) and the phenomenological parameters? (ii)
How are the above results modified if one considers two
spatial dimensions? Is there an instability corresponding
to the transverse wavelike shape of the ripples known from
field observation? (iii) What is the ripple shape and height
predicted from a non-linear analysis of the equations?
(iv) Is there a logarithmic increase of the wavelength in
the non-linear regime as reported in [11,12]? (v) Is it

important to consider a non-local convection term, rather
than the hydrodynamical form written in (1)? The ques-
tion arises since the relevant wavelength is precisely of
the same order as (and not much larger than) the jump
length ξ.
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